Gabor frames with rational density

نویسندگان

  • Yurii Lyubarskii
  • Preben Gråberg Nes
چکیده

We consider the frame property of the Gabor system G(g, α, β) = {eg(t − αm) : m,n ∈ Z} for the case of rational oversampling, i.e. α, β ∈ Q. A ’rational’ analogue of the Ron-Shen Gramian is constructed, and prove that for any odd window function g the system G(g, α, β) does not generate a frame if αβ = n−1 n . Special attention is paid to the first Hermite function h1(t) = te −πt .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image processing by alternate dual Gabor frames

‎We present an application of the dual Gabor frames to image‎ ‎processing‎. ‎Our algorithm is based on finding some dual Gabor‎ ‎frame generators which reconstructs accurately the elements of the‎ ‎underlying Hilbert space‎. ‎The advantages of these duals‎ ‎constructed by a polynomial of Gabor frame generators are compared‎ ‎with their canonical dual‎.

متن کامل

Rational Time-frequency Vector-Valued Subspace Gabor Frames and Balian-Low Theorem

This talk addresses vector-valued subspace Gabor frames with rational time-frequency product. By introduction of a suitable Zak transform matrix, we characterize vector-valued subspace Gabor frames, Riesz bases and orthonorrmal bases, and the uniqueness of Gabor duals of type I and type II. Using the uniqueness results, we extend the classical Balian-Low theorem to vector-valued subspace Gabor ...

متن کامل

The Existence of Gabor Bases and Frames

For an arbitrary full rank lattice Λ in R and a function g ∈ L(R) the Gabor (or Weyl-Heisenberg) system is G(Λ, g) := {eg(x − κ) ̨ ̨ (κ, `) ∈ Λ}. It is well-known that a necessary condition for G(Λ, g) to be an orthonormal basis for L(R) is that the density of Λ has D(Λ) = 1. However, except for symplectic lattices it remains an unsolved question whether D(Λ) = 1 is sufficient for the existence o...

متن کامل

The Density Theorem and the Homogeneous Approximation Property for Gabor Frames

The Density Theorem for Gabor Frames is a fundamental result in timefrequency analysis. Beginning with Baggett’s proof that a rectangular lattice Gabor system {eg(t−αk)}n,k∈Z must be incomplete in L (R) whenever αβ > 1, the necessary conditions for a Gabor system to be complete, a frame, a Riesz basis, or a Riesz sequence have been extended to arbitrary lattices and beyond. The first partial pr...

متن کامل

Density, Overcompleteness, and Localization of Frames

This work presents a quantitative framework for describing the overcompleteness of a large class of frames. It introduces notions of localization and approximation between two frames F = {fi}i∈I and E = {ej}j∈G (G a discrete abelian group), relating the decay of the expansion of the elements of F in terms of the elements of E via a map a : I → G. A fundamental set of equalities are shown betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1108.2684  شماره 

صفحات  -

تاریخ انتشار 2011